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Abstract
We study local conservation laws with non-vanishing conserved densities and
corresponding boundary conditions for the potential Kadomtsev–Petviashvili
equation. We analyse an infinite symmetry group of the equation, and generate
a finite number of conserved densities corresponding to infinite symmetries
through appropriate boundary conditions.

PACS numbers: 02.20.Tw, 11.30.−j
Mathematics Subject Classification: 70S10, 70G65

1. Introduction

The Kadomtsev–Petviashvili equation arises in many applications such as fluid dynamics
(weakly long waves in shallow water, multi-layered shallow fluid), plasma physics, gas
dynamics. Most known aspects of the study of the Kadomtsev–Pertviashvili (KP) equation
are related to soliton solutions and the inverse scattering method (see, e.g., Ablowitz and
Clarkson (1991)). The Lie point symmetry group for the KP equation was calculated in
Schwartz (1982) and Tajiri et al (1982). Properties of the infinite-dimensional group of the KP
equation, potential KP equation, and equations of KP hierarchy were discussed in a number
of papers, e.g., David et al (1985, 1986, 1988) and Orlov and Winternitz (1997). Symmetries
and constants of motion for the KP equation were investigated in Zakharov and Schulman
(1980), Oevel and Fuchssteiner (1982), Infeld and Frycz (1983) (potential KP), Chen et al
(1983, 1987) and Finkel and Fokas (2002), etc.

The goal of the present paper is out of the infinite set of continuity equations for the
potential Kadomtsev–Pertviashvili equation to find those conservation laws that lead to non-
vanishing conserved densities (essential conservation laws). Our essential conservation laws
are associated with the infinite Lie symmetry group of the original equation. For each essential
conservation law of the potential KP equation we will identify corresponding boundary
conditions (asymptotic behaviour). In our derivation we will follow the approach developed
in Rosenhaus (2002).
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A relationship between variational symmetries and conservation laws has a long history
and goes back to the classic Noether results (Noether 1918) (see also Olver (1986)). According
to the second Noether theorem (Noether 1918), infinite variational symmetries with arbitrary
functions of all independent variables do not lead to conservation laws but to a certain relation
between equations of the original differential system. Infinite variational symmetries with
arbitrary functions of not all independent variables were shown to lead to a finite number
of essential local conservation laws (Rosenhaus 2002). For infinite symmetries containing
arbitrary functions of t, it was shown in Rosenhaus (2002) that the main factor determining
the existence of corresponding conservation laws is the form of boundary conditions (see also
Rosenhaus (2003, 2005)).

2. Infinite symmetries and essential conservation laws

By a conservation law for a differential system

ωa(x, u, ui, . . .) = 0, i = 1, . . . , m + 1, a = 1, . . . , n, ua
i ≡ ∂ua/∂xi

is meant a continuity equation

DiKi
.= 0, Ki = Ki(x, u, uj . . .), i, j = 1, . . . , m + 1, xi = (x1, x2, . . . xm, t)

(Ki are smooth functions) which is satisfied for any solutions of the original system (Olver
1986). Each conservation law is defined up to an equivalence transformation Ki → Ki + Pi ,
where DiPi

.= 0. Two conservation laws belong to the same equivalence class if they differ
by a trivial conservation law. For trivial conservation laws the components of the vector Ki

vanish on the solutions, Ki
.= 0, (i = 1, . . . , m + 1), or the continuity equation is satisfied in

the whole space, DiKi = 0 (Olver 1986). By an essential conservation law (Rosenhaus 2003),
we mean such a non-trivial conservation law DiKi

.= 0, which gives rise to a non-vanishing
conserved density

Dt

∫
D

Kt dx1 dx2 · · · dxm .= 0, x ∈ D ⊂ Rm+1, Kt
˙�= 0. (1)

We consider functions u = u(x) defined on a region D of (m + 1)-dimensional spacetime. Let

S =
∫

D

L
(
xi, ua, ua

i , . . .
)

dm+1x a = 1, . . . , n, i, j = 1, . . . , m + 1

be the action functional, where L is the Lagrangian density. The equations of motion are

Ea(L) ≡ ωa(x, u, ui, uij , . . .) = 0, a = 1, . . . , n, i, j = 1, . . . , m + 1, (2)

where E is the Euler–Lagrange operator

Ea = ∂

∂ua
−

∑
i

Di

∂

∂ua
i

+
∑
i�j

DiDj

∂

∂ua
ij

+ · · · . (3)

Consider an infinitesimal transformation with the canonical operator

Xα = αa ∂

∂ua
+ (Diα

a)
∂

∂ua
i

+
∑
i�j

(DiDjα
a)

∂

∂ua
ij

+ · · · ,

αa = αa(x, u, ui, . . .) i, j = 1, . . . , m + 1, a = 1, . . . , n

(4)

(summation over repeated indices is assumed). Variation of the functional S under the
transformation with operator Xα is

δS =
∫

D

XαL dm+1x. (5)
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Xα is a variational (Noether) symmetry if

XαL = DiMi, Mi = Mi(x, u, ui, . . .), i = 1, . . . , m + 1, (6)

where Mi are smooth functions. In the future we will use the Noether identity (Rosen 1972)
(see also, e.g., Ibragimov (1985) or Rosenhaus (2002):

Xα = αaEa + DiRαi, i = 1, . . . , m + 1, a = 1, . . . , n, (7)

Rαi = αa ∂

∂ua
i

+




∑
k�i

(Dkα
a) − αa

∑
k�i

Dk




∂

∂ua
ik

+ · · · . (8)

Applying the Noether identity (7) (with (8)) to L, and combining with (6), we obtain

Di(Mi − RαiL) = αaωa, i = 1, . . . , m + 1, a = 1, . . . , n. (9)

Equation (9) applied on the solution manifold (ω = 0,Diω = 0, . . .) leads to a continuity
equation

Di(Mi − RαiL)
.= 0, i = 1, . . . , m + 1. (10)

Thus, any 1-parameter variational symmetry transformation α (6) leads to a conservation
law (10) (the first Noether theorem) with the characteristic α. The second Noether theorem
(Noether 1918) deals with a case of an infinite variational symmetry group where the symmetry
vector α is of the form

α = ap(x) + biDip(x) + cijDiDjp(x) + · · · , (11)

and p(x) is an arbitrary function of all base variables of the space. Unlike with the first Noether
theorem, a consequence of an infinite symmetry (11) of functional S is not a conservation law
but a certain relation between the original differential equations (Noether 1918). A general
situation when p(x) is an arbitrary function of not all base variables was analysed in Rosenhaus
(2002). For a Noether symmetry transformation Xα we have

δS =
∫

D

δL dm+1x =
∫

D

XαL dm+1x =
∫

D

DiMi dm+1x = 0, x ∈ D ⊂ Rm+1. (12)

Therefore, the following conditions for Mi (Noether boundary conditions) should hold
(Rosenhaus 2002):

Mi(x, u, . . .)|xi→∂D = 0, ∀i = 1, . . . , m + 1. (13)

Equations (13) are usually satisfied for a ‘regular’ asymptotic behaviour u, ui → 0 as
x → ±∞, or for periodic solutions. Let us consider now another type of boundary conditions
related to the existence of local conserved quantities. Integrating equation (10) over the space
(x1, x2, . . . , xm) we get∫

dx1 dx2 · · · dxmDt(Mt − RαtL)
.=

∫
dx1 · · · dxm

m∑
i=1

Di(RαiL − Mi). (14)

Applying the Noether boundary condition (13) and requiring the LHS of (14) to vanish on the
solution manifold we obtain the ‘strict’ boundary conditions (Rosenhaus 2002)

Rα1L|x1→∂D = Rα2L|x2→∂D = · · · = RαmL|xm→∂D = 0. (15)

In this paper, we will be mainly interested in symmetries with arbitrary functions of time γ (t).
It is easy to demonstrate that infinite symmetries with arbitrary functions of t can lead only
to a finite number of essential conservation laws for equations with first-order Lagrangian
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functions, L = L(u, ux, ut ); for details and a generalization to higher order Lagrangians, see
Rosenhaus (2002). Consider variational symmetry α of the form

α = aγ (t) + bγ ′(t) + cγ ′′(t) + · · · + hγ (l)(t). (16)

In order for a differential system to possess Noether local conserved quantities, both Noether
(13) and strict boundary conditions (15) have to be satisfied. The corresponding Noether
conservation law can be found in the form

Dt

∫
dx1 dx2 · · · dxm(Mt − RαtL)

.= 0. (17)

Writing Mt as

Mt = Aγ (t) + Bγ ′(t) + Cγ ′′(t) + · · · + Hγ (l)(t), (18)

from (17) we obtain

Dt

∫
dx1 dx2 · · · dxm[γ (t)A1 + γ ′(t)A2 + · · · + γ (l)(t)Al]

.= 0, (19)

where

A1 =
(

A − a
∂L

∂ut

)
, A2 =

(
B − b

∂L

∂ut

)
, . . . , Al =

(
H − h

∂L

∂ut

)
.

Since γ (t) is arbitrary we get
∫

dx1 dx2 · · · dxm

(
A − a

∂L

∂ut

)
.=

∫
dx1 dx2 · · · dxm

(
B − b

∂L

∂ut

)
.= · · ·

.=
∫

dx1 dx2 · · · dxm

(
H − h

∂L

∂ut

)
.= 0. (20)

Obviously, equations (20), in general, do not determine a system of conservation laws but
impose additional constraints. Thus, Noether symmetries with arbitrary functions of time
instead of conservation laws lead to a set of additional constraints imposed on the function u
and its derivatives. Therefore, the satisfaction of the strict boundary conditions (15), along
with the Noether boundary conditions (13), becomes critical in the sense of avoiding additional
constraints (20). Correspondingly, we have three possible situations:

(1) The strict boundary conditions (15) along with the Noether boundary conditions (13) can
be satisfied for arbitrary function γ (t). Then the system (20) instead of conservation laws
provides additional constraints that the function u and its derivatives must satisfy.

(2) The strict boundary conditions (15) along with the Noether boundary conditions (13) can
be satisfied for some particular functions γ (t). In this case the (finite) symmetry (16)
leads to the Noether conservation law (17) in agreement with the first Noether theorem.

(3) The strict boundary conditions (15) cannot be satisfied for any functions γ (t). In this
case a consequence of an infinite symmetry (16) will be the fact that the solutions of the
original differential equation with the boundary conditions (13) and (15) do not exist.

Thus, in order to avoid additional constraints (20) we have to find those particular functions
γ (t) that lead to different boundary conditions than the ones in the general case when the
function γ (t) is arbitrary (Rosenhaus 2002). Each choice of such functions γ (t) gives rise to
a respective conserved quantity.
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3. Essential conservation laws for the potential KP equation

Let us apply the approach above for finding non-vanishing conserved densities of the potential
Kadomtsev–Petviashvili equation (21) with boundary conditions on the infinity

uxxxx + 6uxuxx + 3s2uyy + 4uxt = 0, s2 = ∓1 (21)

(KP-I and KP-II, correspondingly). The Lagrangian function of equation (21) is

L = u2
xx

2
− u3

x − 2uxut − 3s2u2
y

2
. (22)

The following operators determine the Lie point symmetry group of equation (21) (David
et al 1986):

Xγ = γ
∂

∂x
+ [2xγ ′/3 − 4s2y2γ ′′/9]

∂

∂u
,

Xg = g
∂

∂y
− (2s2yg′/3)

∂

∂x
+ [−4s2xyg′′/9 + 8y3f ′′′/81]

∂

∂u
,

Xf = f
∂

∂t
+ (2yf ′/3)

∂

∂y
+ [xf ′/3 − 2s2y2f ′′/9]

∂

∂x
(23)

+ [−uf ′/3 + x2f ′′/9 − 4s2xy2f ′′′/27 + 4y4f (IV)/243]
∂

∂u
,

Xh = yh
∂

∂u
, Xl = l

∂

∂u
,

where γ (t), g(t), f (t), h(t), l(t) are arbitrary functions. Let us analyse infinite subalgebras
of the symmetry algebra (23). First, let us write our symmetry operators in the canonical form.
For an operator

X = ξ t ∂

∂t
+ ξx ∂

∂x
+ ξy ∂

∂y
+ · · · + η

∂

∂u
, (24)

a corresponding canonical operator takes a form

Xα = X − ξ iDi = α
∂

∂u
+ ζi

∂

∂ui

+ σij

∂

∂uij

· · · , (25)

where

α = η − ξ iui, ζi = Diα, σij = Dijα, . . . . (26)

We will start with the symmetry operator Xγ and find corresponding conserved densities
(Rosenhaus 2003, 2005).

3.1. Conserved densities associated with Xγ

Using (26), (24) and (16) we get

ξx = γ, ξ t = ξy = 0, η = 2xγ ′/3 − 4s2y2γ ′′/9,

α = −γ ux + 2xγ ′/3 − 4s2y2γ ′′/9, a = −ux, (27)

b = 2x/3, c = −4s2y2/9.

Calculating XαL we obtain

XαL = Dx(−γL − 4xuγ ′′/3 + 8s2y2uγ ′′′/9) + Dy(8s2yuγ ′′/3) − Dt(4uγ ′/3). (28)
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Thus, Xγ is a Noether symmetry operator and using (6) and (18) we get

XαL = DiMi, Mt = −4uγ ′/3,

Mx = −γL − 4xuγ ′′/3 + 8s2y2uγ ′′′/9, My = 8s2yuγ ′′/3, (29)

A = C = 0, B = −4u/3.

The form of Noether and strict boundary conditions depends on the function γ (t).

(A) γ (t) is arbitrary
The Noether boundary conditions (13) for Xα are

xu, (L) →
x→±∞ 0, yu →

y→±∞ 0, γ ′u →
t→±∞ 0. (30)

The strict boundary conditions (15) take the form

xut , xu2
x, xuxxx, uxx →

x→±∞ 0, y2uy, uxuy →
y→±∞ 0. (31)

The symmetry transformation Xγ for arbitrary γ (t) leads to a system of additional
constraints (20) instead of conservation laws.

In order to avoid restrictions (20) let us consider some specific forms of γ (t) for which
we can weaken our boundary conditions (30)–(31) and (20).

(B) γ ′(t) = 0, γ (t) = const.

In this case α and Mi simplify to

α = −uxγ, Mx = −γL, My = Mt = 0. (32)

Noether boundary conditions are

ux, uy, uxut , uxx →
x→±∞ 0. (33)

Strict boundary conditions, in addition to (33), will have

uxxx →
x→±∞ 0, uxuy →

y→±∞ 0. (34)

According to (17), a symmetry Xγ in this case will lead to the following essential conservation
law:

Dt

∫∫
u2

x dx dy
.= 0, (35)

or ∫∫
u2

x dx dy
.= const

(conservation of the x-component of the momentum Px) with the boundary conditions
(32)–(33). The corresponding continuity equation has the form

Dx

(
2u3

x + uxuxxx − u2
xx

/
2 − 3u2

y

/
2
)

+ Dy(3uxuy) + Dt

(
2u2

x

) =̇ 0. (36)

(C) γ ′′(t) = 0, γ ′(t) �= 0: γ (t) = at, a = const �= 0

We have

α = −atux + 2ax/3, Mx = −atL, My = 0, Mt = −4au/3. (37)

The Noether boundary conditions are the same as in case B (33) plus

u →
t→±∞ 0. (38)
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For strict boundary conditions in addition to (34) we get

xut , xu2
x, xuxxx →

x→±∞ 0, uy →
y→±∞ 0. (39)

The essential conservation law associated with the boundary conditions (38), (39), (33), (34)
takes the form

Dt

∫∫ [
2tu2

x − 4(xux − u)
/

3
]

dx dy
.= 0. (40)

(D) γ ′′(t) �= 0

In this case Noether and strict boundary conditions have the same form (30), (31) as in case A
and lead to no essential conservation laws.

3.2. Conserved densities associated with Xg

For a corresponding canonical operator Xα we get

α = −guy + 2s2yuxg
′/3 − 4s2xyg′′/9 + 8y3g′′′/81,

ξ x = −2s2yg′/3, ξ y = g, η = −4s2xyg′′/9 + 8y3g′′′/81.
(41)

Calculating XαL we obtain

XαL = DiMi,

Mx = 2s2yLg′/3 + 8s2x2ug′′′/9 − 16y3ug(IV)/81,

My = −gL + 4xug′′/3 − 8s2y2ug′′′/9,

Mt = 8s2yug′′/9.

(42)

As in the previous case, the forms of strict and Noether boundary conditions depend on the
function g(t).

(A) g(t) is arbitrary

From the Noether and strict boundary conditions we get

x2u, (L) →
x→±∞ 0, y2u, y3uy, (L) →

y→±∞ 0, g′′u →
t→±∞ 0. (43)

No local conservation laws are associated with the Noether transformation Xg when g(t) is
arbitrary. Let us consider now some specific forms of function g(t) for which we can weaken
boundary conditions (43).

(B) g′ = 0, g(t) = c = const.

We have

α = −cuy, Mx = Mt = 0, My = −cL. (44)

Noether boundary conditions look as follows:

ux, uy, uxut , uxx →
y→±∞ 0. (45)

The strict boundary conditions have a form

ux, uy, ut , uxx, uxy, uxxx →
x→±∞ 0, uy →

y→±∞ 0. (46)

According to (17), the associated conservation law has a form

Dt

∫∫
uxuy dx dy

.= 0. (47)
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Expression (47) is a conservation of the y-component of the momentum of the system Py with
the regular boundary conditions (45)–(46).

(C) g′′ = 0, g′ �= 0 : g(t) = at, a = const �= 0

We have

α = −atuy + 2as2yux/3, Mx = 2as2yL/3, My = −atL, Mt = 0. (48)

Noether boundary conditions are

ux, uy, uxut , uxx →
x→±∞ 0, ux, uy, uxut , uxx →

y→±∞ 0, (49)

and strict boundary conditions in addition to (49) have

uxy, uxxx →
x→±∞ 0, yuxuy →

y→±∞ 0. (50)

The boundary conditions (49)–(50) are weaker than the ones for the general case (43), and
according to (17), we obtain the following conserved quantity:

Dt

∫∫ [
3tuxuy − 2s2yu2

x

]
dx dy

.= 0. (51)

(D) g′′′ = 0, g′′ �= 0 : g(t) = bt2/2, b = const �= 0

We have

α = −bt2uy/2 + 2s2btyux/3 − 4s2bxy/9, Mx = 2s2btyL/3,

My = −bt2L/2 + 4bxu/3, Mt = 8s2byu/9. (52)

Noether boundary conditions have in addition to (49)

u →
y→±∞ 0, u →

t→±∞ 0, (53)

and strict boundary conditions in addition to (50) read

xut , xu2
x, xuxxx →

x→±∞ 0, yuy →
y→±∞ 0. (54)

The boundary conditions for this case—(53), (54), (49) and (50)—are weaker than in the
general case (43). The following conservation law (17) is associated with the symmetry Xg

in this case:

Dt

∫∫ [
t2uxuy − 4ts2yu2

x

/
3 + 8s2y(xux − u)/9

]
dx dy

.= 0. (55)

(D) g(IV) = 0, g′′′ �= 0 : g(t) = kt3/3, k = const �= 0

We have

α = −kt3uy/3 + 2s2kt2yux/3 − 8s2kxyt/9 + 16ky3/81, Mt = 16s2kyu/9.

Mx = 2s2kt2yL/3 + 16s2kx2u/9, My = −kt3L/3 + 8kxut/3 − 16s2ky2u/9.
(56)

Noether boundary conditions have in addition to (53) and (49)

x2u →
x→±∞ 0, y2u →

y→±∞ 0, (57)

and strict boundary conditions in addition to (54) and (50) read

xut , xu2
x, xuxxx →

x→±∞ 0, y3uy →
y→±∞ 0. (58)
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The boundary conditions for this case, (57) and (58) (with (49), (50), (53) and (54)) are the
same as in the general case (43). No essential conservation laws are associated with the
symmetry Xg .

(E) gIV(t) �= 0

The same boundary conditions as in case A. The symmetry Xg leads to no essential
conservation laws.

3.3. Conserved densities associated with Xf

For Xα in this case we obtain

α=−f ut − f ′[2yuy + xux + u]/3 + f ′′(x2 + 2s2y2ux)/9 − 4s2xy2f ′′′/27 + 4y4f (IV)/243.

(59)

Calculating XαL we obtain

XαL = DiMi,

Mx = −xLf ′/3 + [2s2y2L/9 + u2/3 − 2ux/9]f ′′ − 2ux2f ′′′/9

+ 8s2xy2uf (IV)/27 − 16y4uf (V)/243, (60)

My = −2yLf ′/3 + 8xyuf ′′′/9 − 16s2y3uf (IV)/81,

Mt = −f L − 4xuf ′′/9 + 8s2y2uf ′′′/27.

As in the previous case, the forms of strict and Noether boundary conditions depend on the
function f (t).

(A) f (t) is arbitrary

From the Noether and strict boundary conditions we will get

x2u →
x→±∞ 0, y3u, y4uy →

y→±∞ 0, f ′′u, f ′′′u, f L →
t→±∞ 0. (61)

No local conservation laws are associated with the Noether transformation Xα (59) with
arbitrary function f (t). Let us consider now some specific forms of f (t) for which we can
weaken the boundary conditions (61).

(B) f ′ = 0, f (t) = c = const.

We have

α = −cut , Mx = My = 0, Mt = −cL. (62)

Noether and strict conditions look as follows:

ux, ut , uxx, uxt , uxxx →
x→±∞ 0, utuy →

y→±∞ 0, L →
t→±∞ 0. (63)

The associated conservation law has a form

Dt

∫∫ [
u2

xx − 2ux
3 − 3s2uy

2
]
dx dy

.= 0. (64)

Expression (64) is a conservation of energy of the system, corresponding to the regular
boundary conditions (63).

(C) f ′′ = 0, f ′ �= 0 : f (t) = at, a = const �= 0.

We have

α = −a(3tut + 2yuy + xux − u)/3, Mx = −axL/3,
(65)

My = −2ayL/3, Mt = −atL.
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Noether and strict boundary conditions here in addition to (63) are

xL, xuxuxxx, uux
2, uut , uuxxx →

x→±∞ 0, yL, utuy, uuy →
y→±∞ 0, tL →

t→±∞ 0. (66)

The boundary conditions (66) are weaker than the ones for the general case (61), and we obtain
the following conserved quantity:

Dt

∫∫
[3tL + 2ux(u + xux + 2yuy + 3tut )] dx dy

.= 0. (67)

(D) f ′′′ = 0, f ′′ �= 0 : f (t) = bt2/2, b = const �= 0.

Noether and strict boundary conditions in this case have in addition to (66)

u, xux, xuxx, x
2ut , x

2uxxx →
x→±∞ 0, y2uxuy →

y→±∞ 0, t2L →
t→±∞ 0. (68)

The boundary conditions (68) are weaker than in the general case (61), and the symmetry Xf

leads to the following conservation law:

Dt

∫ ∫ [
9t2L + 6tux(2u + 2xux + 4yuy + 3tut ) +

(
8xu − 4x2ux − 8s2y2u2

x

)]
dx dy

.= 0.

(69)

(E) f (IV) = 0, f ′′′ �= 0 : f (t) = kt2/2, k = const �= 0

Noether and strict boundary conditions in this case have in addition to (68)

x2u →
x→±∞ 0, yu, y2uy →

y→±∞ 0, tu, t3L →
t→±∞ 0. (70)

The boundary conditions are still weaker than in the general case (61), and the symmetry Xf

leads to the following conservation law:

Dt

∫ ∫ [
t3L + 2t2ux(u + xux + 2yuy + tut ) +

8

3
t
(
2xu − s2y2u2

x

) − 32

9
s2y2u

]
dx dy

.= 0.

(71)

(F) f (V) = 0, f ′′′′ �= 0 : f (t) = lt4/4, l = const �= 0

Noether and strict boundary conditions in this case have the same form (61) as for the general
case, and the symmetry Xf leads to no essential conservation laws.

(G) f (V) �= 0

No essential conservation laws are associated with the symmetry Xf .
Infinite symmetries Xh and Xl do not lead to any essential conservation laws.

4. Conclusions

We have generated a finite set of essential conserved densities for the potential Kadomtsev–
Petviashvili equation (21) associated with its infinite classical symmetry group.

In an elegant paper by Infeld and Frycz (1983) an infinite set of continuity equations for
the potential KP equation was presented. In this paper we identified those continuity equations
that lead to non-vanishing (Noether) conserved densities (essential conservation laws). For the
potential Kadomtsev–Petviashvili equation it was demonstrated that infinite symmetries with
arbitrary functions of t lead to a finite number of essential local conservation laws only in special
cases when boundary conditions are weaker than those in the general case. Each conservation
law is determined by a specific form of boundary condition, and known conservation laws of
momentum and energy (35), (47), (64) correspond to the weakest boundary conditions. Other
essential local conservation laws assume stricter asymptotic behaviour.



On conserved densities for the potential Kadomtsev–Petviashvili equation 7703

References

Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge:
Cambridge University Press)

Chen H H, Lee Y C and Lin J-E 1983 Physica D 9 439
Chen H H and Lin J-E 1987 Physica D 26 171
David D, Kamran N, Levi D and Winternitz P 1985 Phys. Rev. Lett. 55 2111
David D, Kamran N, Levi D and Winternitz P 1986 Phys. Lett. A 118 390
David D, Levi D and Winternitz P 1988 Phys. Lett. A 129 161–4
Finkel F and Fokas A S 2002 Phys. Lett. A 293 36
Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston, MA: Reidel)
Infeld E and Frycz P 1983 Acta Phys. Pol. B 14 129
Kadomtsev B B and Petviashvili V I 1970 Sov. Phys.—Dokl. 15 539
Noether E 1918 Nachr. König. Gessell. Wiss. Gött. Math.-Phys. Kl. Heft 2 235
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